Structured vs Unstructured Data: What’s the Difference

Last Updated: October 3, 2024

We are in an age where data is overloading- everything from regional databases to your last Instagram story, every piece of information has become like a lifeblood for many businesses. However, not all data is created equal, and each data format is categorized into two different types broadly: Structured and unstructured data. 

In this article, I will walk you through structured vs unstructured data, explore the differences between these two types of information, and check their examples for data-driven decision-making.

Let’s get to it! 

What is Structured Data?

Structured data is the type of big data that is highly organized and easily interpreted by machine learning algorithms. All the information is organized in rows and columns, just like spreadsheets. These types of data are managed by Sequel Query Language (SQL). Structured data often includes quantitative data; such as age, contact details, address, etc. 

Pros and Cons of Structured Data

Pros
  • Requires less processing and is easy to manage
  • Easy to understand for machine learning algorithms
  • Compatible with a wide range of analytics tools
  • Structured data is space efficient- it requires less storage
Cons
  • Limited versatility
  • Manual data entry requires a lot of time
  • It can be expensive to maintain and set up structured data types

Examples of Structured Data

Because structured data is quantitative in nature, it is super easy for big data applications to collect and sort these data types. Some examples of structured data are: 

  • SQL databases
  • Excel files
  • SEO tags
  • Point of sales (POS) data, and more

Top Analytics Software for Structured Data

Also Read: 7 Best Free SQL Software for Windows and Mac

What Is Unstructured Data?

Unstructured data is categorized as qualitative data, and it can’t be directly analyzed by conventional data software or methods. This type of data is available in various forms, such as emails, social media posts, images, videos, audio files, and documents.

Pros and Cons of Unstructured Data

Pros
  • Unstructured data remains in its native format, which makes it highly flexible
  • These data types are very portable and can be stored as data lake unstructured data
  • It has the potential to provide great insights into business decisions
  • It can be stored on-premises or in cloud
Cons
  • Demands extensive storage space
  • Challenges in update, delete, and search operations
  • Higher storage costs compared to structured data

Examples of Unstructured Data

Some of the examples of unstructured data are:

  • Social Media
  • Business Documents
  • Emails
  • Webpages
  • Customer Feedback, and more

Top Analytics Software for Unstructured Data

Difference Between Structured and Unstructured Data

Now that you have understood what is structured and unstructured data, let’s talk about their differences. I have also provided a chart for Structured versus Unstructured data. 

Structured vs Unstructured Data: Organization and Format

  • Structured Data: Structured data is highly organized, and it is formatted in a tabular structure, which is typically found in relational databases.
  • Unstructured Data: It lacks a predefined data model and does not have a specific organizational structure. Unstructured data can include text documents, images, videos, audio files, and more.

Structured Data vs Unstructured Data: Sources

  • Structured Data: Structured data is generally sourced from online forms, web server logs, network logs, OLTP systems, GPS sensors, etc.
  • Unstructured Data: These data sources include word processing files, email messages, PDF files, images, etc.

Structured Versus Unstructured Data: Storage Requirements

  • Structured Data: As we know, structured data is stored in tabular forms like SQL database or excel sheets, and it requires only a small amount of storage. Furthermore, these data can easily be stored in data warehouses and are highly scalable as well.
  • Unstructured Data: On the other hand, unstructured data is stored in NoSQL databases or media files, and it requires more space. This data type is generally stored in data lakes which makes scaling difficult.

Structured Data vs Unstructured data: Analysis Methods

  • Structured Data: Analysis methods used for structured data are data clustering, classification and regression.
  • Unstructured Data: Data mining and data stacking methods are used for the analysis of unstructured data.

Unstructured vs Structured data: In Terms of Flexibility

  • Structured Data: It is less flexible because the schema and data types are predefined. So, any changes to the structure can be time-consuming.
  • Unstructured Data: These data types are highly flexible as there are no predefined schemas. You can easily add new types of data without the need to modify the underlying structure. This makes it suitable for handling evolving data types.

Structured vs Unstructured Data Examples

  • Structured Data: Some examples of structured data are employee databases, transactions, financial statements, credit and debit card information, etc.
  • Unstructured Data: A few examples of unstructured data are social media posts, audio or video recordings, images, etc.

Now, let’s take a look at the comparison chart between structured and unstructured data. Here, we will measure the difference between both data types based on characteristics. 

Characteristics Structured Data Unstructured Data
Nature Quantitative in nature Qualitative in nature
Format Fixed and predefined format No predefined format or organization
Technology It is based on relational database Based on binary and character data
Processing speed Faster processing due to organized data Slower processing as it requires advanced algorithms for analysis
Use cases Online booking, inventory control, CRM, etc. Sentiment analysis, social media analysis, OCR, etc.
Ease of analysis Easy and straightforward with standard querying (e.g., SQL) Challenging as it requires advanced techniques (NLP, ML)
Examples Databases (customer info, financial records) Text documents, images, videos, social media posts

What Is Semi-Structured Data?

Apart from structured data and unstructured data, there is another data type called semi-structured data. This data type is not completely structured or unstructured and includes the characteristics of structured data, and also contains unstructured information that does not follow any specific format or schema. Semi-structured data includes inherited information like location, time, email address, or device ID stamp. 

How to Add Structured Data to Your Website?

To add structured data to your website, follow the steps below: 

  • Choose your page and select your structured data.
  • Open Google’s Structured Data Markup Helper to add it to your website.
  • Test your structured data and done.

Key Takeaways

As we are about to conclude our topic on the difference between structured and unstructured data, here are few points to consider: 

FAQs

  1. Is structured data quantitative?

    Yes, structured data is quantitative. It's often displayed as numbers, dates, values, and strings. 

  2. What is semi-structured data?

    Semi-structured data are data types that do not comply with a data model but it have some structure. 

  3. What are two examples of unstructured data?

    The two examples of unstructured data XML files, images, emails etc. 

  4. Where do you get unstructured data?

    Unstructured data is a type of raw data and it can be found in file systems or data lakes. 

  5. How do you store unstructured data?

    You can store unstructured data in applications, data lakes, NoSQL databases, and data warehouses. 

Published On: November 30, 2023
Shubham Roy

Shubham Roy is an experienced writer with a strong Technical and Business background. With over three years of experience as a content writer, he has honed his skills in various domains, including technical writing, business, software, Travel, Food and finance. His passion for creating engaging and informative content has earned him recognition in the industry. When he's not busy crafting articles, Shubham enjoys reading, exploring new technologies, and staying updated with the latest trends in the world of business and finance.

Share
Published by
Shubham Roy

Recent Posts

LCMS vs LMS: Which System Meets Your Needs?

Picture world where learning is easy, interesting, and customized to your needs and requirements.… Read More

December 13, 2024

On-Premise vs Cloud HRMS: Making the Right Choice for Your Business?

The choice between cloud-based and on-premise HRMS is more strategic than technical. Each of the… Read More

December 13, 2024

How Investment Portfolio Management Software Simplifies the Financial Journey?

Investment portfolio management software solutions continue to transform how investors handle their prized riches or… Read More

December 10, 2024

How to Revolutionize HR Management with Geotracking?

Geotracking is transformational to HR management with the introduction of high-end tools such as GPS… Read More

December 10, 2024

Winning Strategies of ERP Implementation and Steps for Success

The implementation of an Enterprise Resource Planning system is revolutionary change-over process that can… Read More

November 29, 2024

Step-by-Step Guide to SAP S/4HANA Implementation for Future-Ready Enterprise

For many organizations, SAP ECC has been the backbone of operations for many years; with… Read More

November 26, 2024